
A Compositional Framework for Scientific Model
Augmentation
Micah Halter, Christine Herlihy, and James Fairbanks

Georgia Tech Research Institute, Atlanta, USA

Scientists construct and analyze computational models to understand the
world. That understanding comes from e�orts to augment, combine, and
compare models of related phenomena. We propose SemanticModels.jl, a
system that leverages techniques from static and dynamic program analysis
to process executable versions of scienti�c models to perform such meta-
modeling tasks. By framing these metamodeling tasks as metaprogram-
ming problems, SemanticModels.jl enables writing programs that generate
and expand models. To this end, we present a category theory-based frame-
work for de�ning metamodeling tasks, and extracting semantic information
from model implementations, and show how this framework can be used to
enhance scienti�c work�ows in a working case study.

SemanticModels.jl facilitates several metamodeling tasks by detecting and exploit-
ing the implicit relationships between the semantically rich, natural language-based
representations of scienti�c knowledge found in academic papers, and the relatively
semantically sparse, but modular, precise representations found in code. We rep-
resent this knowledge with categories and support metamodeling tasks that may be
exploratory, iterative, and/or inter-disciplinary in nature. Our theoretical contribu-
tions form the basis for analyzing the metamodeling tasks scientists perform, and our
software can augment scienti�c work�ows to assist scientists in their day to day work.

Motivation Progress in science often comes from adapting and extending models from
prior work(s) to address new problems, but current scienti�c research work�owsmake
leveraging components from existing work�ows di�cult. This is due in part to the
fact that modern scienti�c inquiry often lends itself to highly tailored, procedural
scripts that are primarily intended to produce and record results, with less attention
on software engineering best practices [4, 15].
Scienti�c code contains a large amount of sophisticated domain knowledge that is

known to the author(s), but is not explicitly represented in the code, and is therefore
not always clear to a reader or user. Such semantic modeling information includes

1

http://www.compositionality-journal.org/template/

principles, rules, and constraints imposed by the physical phenomena being modeled.
For example: (1) stochastic systems are modeled with probability values, which are
constrained to be between 0 and 1; (2) physical measurements have units and must
obey the laws of dimensional analysis, which prohibits computation such as 3m+4m/s;
and (3) signal processing algorithms must treat time domain and frequency domain
signals di�erently, even though they are both represented by arrays of �oating point
numbers. This work is grounded in the belief that a framework that augments scien-
ti�c work�ows without requiring a wholesale reimplementation in a domain speci�c
language is most e�ective for real world application by scientists.

Significance As computational models of physical, biological, and engineered systems
grow increasingly sophisticated, program analysis tools must be able to understand
and manipulate these models. We introduce a formalism to study the augmentation
of scienti�c modeling code. These ideas are implemented in a software package for
analyzing and manipulating models written in the Julia programming language [2].
The Julia language is ideal for this problem because it is widely used in scienti�c
computing and includes a capable type system with multiple dispatch. The Julia type
system can encode information about model semantics so that the compiler can un-
derstand, enforce, and manipulate these semantics. These manipulations are studied
in the context of epidemiological models, but are broadly applicable to both agent-
based and di�erential equation-driven simulations, as well as statistical and machine
learning models.

Related Work The semantic metamodeling system proposed here is informed by foun-
dational concepts from several disciplines, including software engineering, program-
ming language theory, natural language processing, and statistical meta-analysis.
Software engineering emphasizes modular design, automation of repeated tasks, and
incremental software modi�cations [3]. Within this context, refactoring code refers to
a process in which developers modify portions of existing code to preserve or improve
correctness while increasing maintainability. The correctness of a piece of software
can be formally de�ned, and it is possible to design an automatic veri�cation system;
this is a well-established �eld of study within theoretical computer science [8].
Our system extends this notion of automatically veri�cation of program correctness

to the semantic level by identifying, connecting, and verifying the unwritten invari-
ants of scienti�c modeling code. In contrast to the explicit type and syntax rules
employed by traditional veri�cation approaches, the rules we seek to identify, extract,
and use are often informally speci�ed or encoded in non-operational code and text,
such as documentation, comments, and/or variable naming conventions. An analo-
gous framework based on using categories to represent semantic information from
data science work�ows is based on ontologies and data�ow graphs [11]. Categori�ca-

2

tion is used to provide unity and depth of understanding to existing scienti�c modeling
frameworks [1]. The categori�cation of individual modeling frameworks exposes the
structure of the scienti�c models in a domain and enables compositionality of sci-
ences. Our software implementation is intended to serve as a generic framework for
implementing categori�ed modeling frameworks by post hoc grafting a more elegant
framework onto code implemented with pre-categori�cation libraries.
Disciplines of science and applied mathematics are amenable to formal systems

of semantic veri�cation; for example, unitful computation can be veri�ed via dimen-
sional analysis [5], while linear algebra can be veri�ed bymatrix dimension checks [9].
Both are understandable through static program analysis and categori�cation. We
believe that categori�cation enables the formalization of many informal systems of
scienti�c modeling with type systems, providing the computational infrastructure for
e�cient and elegant implementations.

Theoretical Foundations We begin by presenting a formal framework that can be used to
represent and reason about these di�erent metamodeling use cases. We then provide
examples from epidemiology to illustrate how this framework, and the associated se-
mantic knowledge graph construction process, can be applied to augment real-world
scienti�c work�ows [7]. Our motivation for focusing on epidemiology is twofold: the
associated literature demonstrates the use of a sharedmodel structure with many vari-
ations. Furthermore, the math represented therein spans both discrete and continuous
systems of equations, and is solved by a diverse set of algorithms.
Scienti�c programmers represent models at three levels: (1) as a set of domain

concepts understood by the developer, but not explicitly stated or encoded; (2) as code
implementations in a high-level language; and (3) as an executable program compiled
or interpreted on a speci�c computer system. We study representations of programs
that span level 1 and 2 as categories that represent the knowledge of scientists as
expressed in code.

Figure 1: Ologs can be used to represent the structure of scientific models without the mathematics. Objects
are represented by nouns and relationships between objects are represented with verbs.

3

A model M = (D,R, f) is a tuple containing a set D, the domain, and a set R, the
co-domain, with a function f : D 7→ R. If D is the cross product of sets D1 ×D2 · · ·Dk,
then f = f(x1 . . . xk), where x are the independent variables of M . If R = R1 ×R2 · · ·Rd,
then Ri are the dependent variables of M . What is intuitively the same model can be
represented in several di�erent categories. Each representation considers di�erent
aspects of the model’s structure. For example, Figure 1 shows the SIR model in the
category of ontology logs (ologs), and Figure 2a shows the same model in the category
of programs.

(a)
(b)

Figure 2: 2a Type diagram of the SIR model. The red arrows and boxes show that Vector{Float} is reused
for two semantically different types. 2b Type diagram of the SIR model with ambiguity resolved by introducing
the Params and Initial types. Some type names are abbreviated for clarity i) Int, v) Vector{Int}, and vv)
Vector{Vector{Int}}. Functions names starting with a "." are struct field lookups in Julia.

The parsimonious formalization of what constitutes a valid transformation, or set
of rules for modifying or combining models, requires us to assess not only mathe-
matical and programmatic behavior of the system, but also the extent to which the
resulting set of models are internally consistent and re�ective of domain-speci�c sci-
enti�c facts. We address this with multiple representations of program semantics that
capture di�erent types of model structure.
A Category C is a set of objects and morphisms, which are structure-preserving

functions between the objects. Common examples of categories include the category
of all groups, the set of all �nite graphs, and the set of all �nite preorders [12]. Ologs
are a diagrammatic approach to formalizing scienti�c knowledge used to precisely
specify a conceptual model of a phenomenon or experiment [13]. An olog is composed
of types (boxes) and aspects (edges). Figure 1 represents the susceptible-infected-
recovered (SIR) model as an olog.
All programs in a strongly typed language have a set of types and functions that

map values between those types. For example, the Julia program: a = 5.0; b = 1; c =

2*a; d = b + c; has the types {Int, Float} and functions {*, +}, which are both binary
functions. These programs can be represented as a category, where the objects are the
types and the morphisms are the functions. We refer to the input type of a function
as the domain and the output type as the codomain of the function. Multi-argument

4

functions are represented with tuple types representing their arguments. For example1

+(a::Int,b::Int)::Int is a function + : Int × Int → Int. These type categories are
well studied in the �eld of functional programming. We apply these categories to the
study of mathematical models. There is a spectrum between conceptual knowledge
and compiler knowledge, with ologs lying toward the conceptual end and compiler
data�ow graphs at the programmatic end.
Functional programming and category theory are intertwined and base the analysis

of programs on the types and functions used in the program [14]. SemanticModels.jl

implements a dynamic analysis tool to extract the runtime type information for every
function. That is, to build a graph where the nodes are types and the edges are func-
tions, where a function f connects types T,U if T is the type of f’s arguments and U is
the type of f’s output values as expressed in julia syntax, f(x::T)::U. This theoretic
approach enables reasoning over the semantics of programs.
The most salient consequence of programming language theory is that the more in-

formation a programmer can encode in the type system, themore helpful the program-
ming language can be for improving performance, quality, and correctness. Haskell
programmers often use the type system to encode program semantics to improve soft-
ware quality [10]. SemanticModels.jl uses the type system to encode model semantics
to improve understanding, adaptability, and extensibility of the modeling code. Cat-
egory theory provides a natural vehicle for expressing this information.

Semantic Integrity of Modeling Programs Model developers use conventions to encode se-
mantic constraints into their code – for example, prefacing all variables that refer
to time with a t_, such as t_start, t_end. This semantic constraint that all vari-
ables named t_ are temporal variables is not encoded in the type system. Behavioral
subtypes are one way of encoding such information, but they are not widely used in
scienti�c computing. Another example is that vectors of di�erent lengths are incom-
patible in the context of arithmetic operations. In a compartmental model, the number
of initial conditions must match the number of compartments. For example in an SIR
model, there are 3 initial conditions, [S, I,R], and there are 2 parameters [β, γ]. Com-
putational systems employed by scientists will use a runtime check on dimensions to
detect malformed linear algebra 2. Scientists rely on this limited form of semantic in-
tegrity checking provided by the language. In contrast, SemanticModels.jl is intended
to rigorously apply such integrity checking across the modeling ecosystem.
Our goal is to encode the maximum amount of information from scienti�c codes

into the type system, where algorithms can analyze the integrity of programs in the
language of categories. For example, if there are types S, T and functions f, g : S →

1The a::A operator in Julia asserts that the value of a is an instance of type A

2Julia, Scientific Python, and Matlab use run time checks, the C++ library Eigen supports both static and
dynamic dimension verification

5

https://eigen.tuxfamily.org/dox/group__TutorialMatrixArithmetic.html

T such that Codom(f) = Codom(g) but Range(f) ∩ Range(g) = ∅, then we say that the
types are ambiguous. In order to more fully encode program semantics into the type
system, the programmer (or an automated system) should introduce new types into
the program to represent these disjoint subsets. Category theory shows both why this
is a problem for program analysis3 and how to solve it with union types.
Returning to the SIR model example, Figure 2 shows how the .param and .initial

functions both map Problem to Vector{Float} but with disjoint ranges. The mathemat-
ics of the model dictate that parameters and initial conditions have di�erent dimen-
sions and are thus incompatible vectors. Any program analysis of the model will be
hampered by the ambiguity introduced by using the same type to represent two dif-
ferent concepts. The functions .first and .second, which provide the beginning and
end of the time domain of the system, have overlapping ranges and are comparable
as times. This is an example of how programming language ideas can improve the
analysis of computational models.

Program Analysis of Models Static program analysis provides direct access to the function
call graph; however, inferred types and runtime values require dynamic analysis. To do
this, we inject metadata collection statements into each program’s AST, so that when
the AST is evaluated, we are able to dynamically capture variable assignments and
function calls. In practice, scientists prefer dynamic languages that facilitate faster
development, but they are challenging for static analysis techniques. Julia provides a
hybrid of static compilation and dynamic execution that is amenable to rapid devel-
opment, prototyping, and program analysis.

f(a, b) = 2 · (a ∗ b) g(a, b) = 2 · (a/b)

Z × Z

Z

∗π1 π2

2×

Z × Z R⊕ Error

D

/

π1 π2

2×

Figure 3: Programs with the same structure admit a fully faithful functor from one to the other. In this case
the functor is shown with color identifying which functions are mapped to each other. The objects are types
and the morphisms are functions (subroutines). The morphisms πi represent the projection functions that select
the ith element from a tuple.

Model augmentation refers to the set of metamodeling programs where a scientist
takes a model,M , and a transformation, T , and uses the transformation to construct a
new model, T (M). In complex, high performance modeling and simulation software,
these changes can be very labor intensive. To facilitate the identi�cation of program
components that are good candidates for modi�cation, SemanticModels.jl provides a

3If model transformations are represented as functors in this category, this form of ambiguity prevents the type
system from enforcing semantic correctness of model transformations

6

bundle of tools that rely on Julia metaprogramming (e.g., expression manipulation
via Lisp-style macros) to modify programs for the purpose of dynamic information
extraction. Model augmentation is implemented via program transformations. Fig-
ure 3 illustrates how programs can be represented as categories and transformations
between those programs are functors. Many families of mathematical and scienti�c
models have a separation between structure and values. For example, in dynamical
systems and reaction networks, there is the structure of the equations and then the
speci�c rate parameters. Representing programs as cateogries and transformations
can exploit this notion of “same structure, but di�erent values” across a wide class of
models. The simple example in Figure 3 shows how properties of the functor between
two models tell use about the relationship between those two models.
We can illustrate another example of this in a simple yet realistic agent-based

model (ABM). For example, an SIR model can be implemented as an ABM, as depicted
in Figure 4. This script de�nes a basic agent-based model of disease spread called
SIRS. Each agent is in one of 3 states: S Susceptible, I Infected, R Recovered, and the
agents transition between states.
By viewing model transformations as functors between model categories, we can

implement model transformations that preserve structure while changing the behavior
of the model (e.g. by adding or removing capabilities). Our system includes the ca-
pability to add and remove states and change behaviors of the model, while capturing
the nature of this change in a data structure, allowing users to probe the relationship
between a set of models. For example, the SIRS model does not have the structure
necessary to model a fatal disease as there is no D component, so a scientist would
have to change the code. By representing these changes as model transformations,
we are able to add a new state, D Dead, and the necessary transitions to enable the
modeling of fatal diseases.
Another type of model transformation includes refactoring models to introduce

more structure into the program that can be exploited by program analysis techniques
in the compiler. One can transform the model shown in Figure 4 by re-factoring the
Symbol representation of the states into singleton types, and naming the anonymous
functions as transition. Figure 5 illustrates how a program transformation aimed at
encoding model semantics into the type system can change the typegraph of the pro-
gram. The colors in Figure 5 show a graph homomorphism between the type graphs.
This homomorphism maps concepts from the new model to the old model. This ex-
ample illustrates another point: while we naturally think of model augmentation as
turning a simple model into a more complex model; when applying category reason-
ing, it is more convenient to think of a transformation m′ = t(m) as inducing a functor
φ : m′ 7→ m. This functor, φ : m′ 7→ m, takes a complex model and simpli�es it, which
provides an interpretation of m′ in terms of m.
Subsequently, we can also see how models can be represented in di�erent cate-

7

� �
import Base: count

abstract type AgentModel end

the main data structure

mutable struct StateModel <: AgentModel

states

agents

transitions

loads

end

function main(nsteps)

initialize the model

n = 20

a = fill(:S, n)

ρ = min(1, max(0, 0.5 + randn(Float64)/4)) # chance of recovery

µ = 0.5 # chance of immunity

T = Dict(

:S=>(x...)->rand(Float64) < stateload(x[1], :I) ? :I : :S,

:I=>(x...)->rand(Float64) < ρ ? :I : :R,

:R=>(x...)->rand(Float64) < µ ? :R : :S,

)

sam = StateModel([:S, :I, :R], a, T, zeros(Float64,3))

advance the simulation by nsteps steps

newsam = step!(deepcopy(sam), nsteps)

compute summary statistics from the simulation

counts = describe(newsam)

return newsam, counts

end

end� �
Figure 4: A Simple ABM for a SIR modeling. The agents go from S 7→ I 7→ R 7→ S based on random numbers.
The probability of S 7→ I is dependent on the fraction of agents in state I. The probability of recovering is
a constant ρ, and the disease confers some temporary immunity with probability µ. The function definitions
for step!, which advances the timesteps of the ABM, and describe, which computes summary statistics for
downstream analysis, are omitted for space.

gories, and the notions of category theory in those di�erent contexts allow for dif-
ferent kinds of analysis of the models. Speci�cally, Figure 5 shows a pair of models
represented as graphs and a functor between them (graph homomorphism) that relate
the types in one model to the types in the other model. The nature of the functor is
determined by the category used and the models’ structure.
The program transformation shown in Figure 5 is best viewed as a refactoring,

where the maintainability and robustness of a model was improved without changing
its behavior as a mathematical function. A typical model augmentation does change
the behavior of the model as a mathematical function in order to add capabilities or
adapt the model to a new physical phenomena. Given an algorithmic mechanism for

8

(a)

(b)

(c)

Figure 5: 5a The input typegraph of the code corresponding to Figure 4. 5b The states of the agents as
expressed in a typegraph. 5c The typegraph of the code refactored to encode model semantics into the type
system. Note S, I,R are represented by the singleton types Susceptible, Infected,Recovered respectively,
and the colors show a graph homomorphism between the type graphs. The edges showing projection functions
are dotted for visual clarity in the diagram, and the boxes labeled transition and distributions are identified as
meaningful subgraphs of the program representing the agent-state transitions, and the calculation of population
distribution respectively.

9

changing scienti�c models, the �rst question of any scientist will be, “Which model
should I use?” This question is answered by model selection.

Algebraic Model Selection When model families are parameterizable by Rn, statistical
theory can show how to choose the best model using a regularization process. Take,
for example, polynomial regression: where data is represented by random variable(s).
De�ne X ∈ Rn×d as the independent variables and y ∈ Rn as the dependent (target)
variable. Polynomial least squares regression solves the optimization problemminp ‖y−
p(X)‖2, where p(X) =

∑
i βix

i and ‖ · ‖2 is the two norm.
For model selection in polynomial regression, one must choose a polynomial degree

and set of non-zero coe�cients to de�ne the model. Statisticians use the LASSO to
select the best polynomial. LASSO is de�ned as minβ

∑
j(

∑
i βix

i
j − yj)2 +

∑
i |β|, where

j ranges over samples and i ranges over polynomial terms. Regularization generally
works when the space of models can be parameterized by a continuous parameter, and
the loss function can be modi�ed to support the regularization penalty.
Meanwhile, for complex models, the space of possible models cannot be param-

eterized continuously. Additionally, the inclusion of the regularization penalty often
increases the complexity of the solver, because the di�culty of the optimization prob-
lem increases (eg, addition of LASSO regularization spoils the quadratic properties of
the least squares problem). Sparse polynomial regression (polynomials where the set
of non-zero coe�cients is small and known a priori) is not continuously parameteri-
zable and we need an algebraic perspective.

∅

Tx T1

TxTx TxT1 T1Tx

TxTxT1 TxT1Tx T1TxTx T1TxT1

Tx

T1

Tx
T1 Tx

T1

T1 Tx

T1

Tx
T1

(a)

1

x

x2 x + 1

x3 x2 + 1 x2 + x

Tx

T1

Tx
T1

Tx

T1 Tx

T1

(b)

Figure 6: 6a Monoid over {Tx, T1} with T1T1 = T1. 6b Action of Tx, T1 on polynomials.

The example of sparse polynomial regression model selection can be analyzed in
terms of program transformations to illustrate our approach. Let M be a monoid with
two generators, Tx, T1 and one equation T1Ṫ1 = T1. The elements in this monoid are
strings of these two symbols and the multiplication operation is concatenation. De�ne
the action of M on the set of formal polynomials in x by the action of the generators.

Tx modi�es a polynomial by multiplying by x, so that Tx(p) = xp and T1 modi�es a
polynomial by adding a constant term if it doesn’t already exist T1(p) = p + 1, where
1+1 = 1. The set of all polynomial regression models lie in theM-orbit of the constant

10

polynomial p(x) = 1. Figure 6 shows how polynomial regression models can be de-
rived as transformations withM . This method of deriving more complex models from
simple models can be generalized and implemented in highly generic software. In our
representation of models as categories and model augmentations as functors between
those categories, there is always a model transformation monoid. If that monoid is
�nitely generated, we can represent the space of possible transformations with a di-
rected graph, analogous to a Cayley graph. And the set of possible models is the action
of the transformation monoid on a base model.
This monoidic representation can be further applied to combining models and sta-

tistical regression models into work�ows using the ideas from Fong and Spivak [6].
By representing the work�ow as a data structure and the code that de�nes a work�ow
as a model, we are able to recursively apply model augmentation and achieve work�ow
modi�cation using the same tools, now operating on compositions of models.

Conclusions As scienti�c modeling code increases in complexity, it becomes harder for
readers to understand all the semantic details that are being represented. We present
a methodology for translating properties of functors to scienti�cally meaningful re-
lationships between models, and a framework for extracting information from, rea-
soning about, and augmenting computational models. We have packaged these ideas
into SemanticModels.jl, a software package that allows for extension, modi�cation,
and composition of models written in standard Julia code. This library allows model
transformations to be de�ned semantically, and is based on category theoretic knowl-
edge representations, which aims to be practically usable and theoretically sound.

Acknowledgments This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Agreement No. HR00111990008.

References

[1] J.C. Baez and B.S. Pollard. A compositional framework for reaction networks. Reviews in Mathematical
Physics, 29(9):1750028–425, Jan 2017.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah. Julia: A fresh approach to numerical computing.
SIAM Review, 59(1):65–98, 2017.

[3] B.W. Boehm. Seven basic principles of software engineering. Journal of Systems and Software, 3(1):3 –
24, 1983.

[4] E. Deelman, T. Peterka, I. Altintas, C.D. Carothers, K. Kleese van Dam, K. Moreland, M. Parashar,
L. Ramakrishnan, M. Taufer, and J. Vetter. The future of scienti�c work�ows. The International Journal
of High Performance Computing Applications, 32(1):159–175, apr 2017.

[5] S Drobot. On the foundation of dimensional analysis. Studia Mathematica, 14, 01 1953.

[6] B. Fong and D.I. Spivak. Seven Sketches in Compositionality: An Invitation to Applied Category Theory.
arXiv e-prints, page arXiv:1803.05316, Mar 2018.

[7] S. Frost, A. Walsh, and J. Thompson. Epicookbook: A cookbook of epidemiological models, 2018.

11

[8] C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580, October
1969.

[9] H.D. Macedo and J.N. Oliveira. Typing linear algebra: A biproduct-oriented approach. Science of Com-
puter Programming, 78(11):2160–2191, 2013.

[10] C. Manzino and A. Pardo. A security types preserving compiler in Haskell. In F.M. Quintão Pereira, ed-
itor, Programming Languages: SBLP 2014, volume 8771, pages 16–30, Cham, 2014. Springer International
Publishing.

[11] E. Patterson, I. Baldini, A. Mojsilovic, and K.R. Varshney. Teaching machines to understand data
science code by semantic enrichment of data�ow graphs. CoRR, abs/1807.05691, 2018.

[12] D.I. Spivak. Category Theory for the Sciences. The MIT Press, 2014.

[13] D.I. Spivak and R.E. Kent. Ologs: A categorical framework for knowledge representation. PLOS ONE,
7(1):1–1, January 2012.

[14] P. Wadler. The essence of functional programming. In Proceedings of the 19th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’92, pages 1–14, New York, NY, USA, 1992.
ACM.

[15] G. Wilson, D.A. Aruliah, C.T. Brown, N.P. Chue Hong, M. Davis, R.T. Guy, S.H.D. Haddock, K.D. Hu�,
I.M. Mitchell, M.D. Plumbley, B. Waugh, E.P. White, and P. Wilson. Best practices for scienti�c com-
puting. PLoS Biology, 12(1):e1001745, jan 2014.

12

